Unitary Equivalence to a Complex Symmetric Matrix: A Modulus Criterion

نویسندگان

  • Stephan Ramon Garcia
  • Daniel E. Poore
  • Madeline K. Wyse
چکیده

KEY WORDS, SUBJECT CLASSIFICATION The manuscript must be accompanied by a brief abstract, no longer than 100-150 words. It should make minimal use of mathematical symbols and displayed formulas. Mathematics Subject Classification (2000) with primary (and secondary) subject classification codes and a list of 4-5 key words must be given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On tridiagonal matrices unitarily equivalent to normal matrices

In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied. It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its superand subdiagonal elements. The corresponding elements of the superand subdiagonal will have the same absolute val...

متن کامل

Unitary Equivalence to a Complex Symmetric Matrix: Low Dimensions

A matrix T ∈ Mn(C) is UECSM if it is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix. We develop several techniques for studying this property in dimensions three and four. Among other things, we completely characterize 4×4 nilpotent matrices which are UECSM and we settle an open problem which has lingered in the 3×3 case. We conclude with a discussion concerning a cru...

متن کامل

STRUCTURED JORDAN CANONICAL FORMS FOR STRUCTURED MATRICES THAT ARE HERMITIAN, SKEW HERMITIAN OR UNITARY WITH RESPECT TO INDEFINITE INNER PRODUCTS VOLKER MEHRMANNy AND HONGGUO XUy

For inner products de ned by a symmetric inde nite matrix p;q, canonical forms for real or complex p;q-Hermitian matrices, p;q-skew Hermitian matrices and p;q-unitary matrices are studied under equivalence transformations which keep the class invariant.

متن کامل

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

A unitary similarity transform of a normal matrix to complex symmetric form

In this article a new unitary similarity transformation of a normal matrix to complex symmetric form will be discussed. A constructive proof as well as some properties and examples will be given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011